If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16a^2+2a-10=0
a = 16; b = 2; c = -10;
Δ = b2-4ac
Δ = 22-4·16·(-10)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{161}}{2*16}=\frac{-2-2\sqrt{161}}{32} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{161}}{2*16}=\frac{-2+2\sqrt{161}}{32} $
| 3(5x+5)=31+16 | | 3w+w=75 | | 7f-13=36 | | 2.50+0.15x=1.70+.20x | | 3w+5=75 | | 5x-3x•3=-22 | | 3b-8=43 | | 7(y+1)=91 | | 5x-23+3x-23=90 | | 13.64+0.06x=14.39-0.15x | | w-60/5=6 | | Y=9x^2+11x-14 | | -23=8-6x-7 | | -4p-(-6)=-6 | | -33=8-6x-7 | | 6-9y+8y=4 | | 3n-3n=-1 | | 22=p/5-18 | | t/8-22=24 | | 8p^+2p-15=0 | | 25-3g=1 | | 5(p+7)+4=41+5p | | u/6+17.1=-2.1 | | j+1/10=2 | | 2x+4x–(3x+1)=12 | | 266=125-v | | v+9/4=5 | | 15.24+0.05x=15.74-0.13x | | 3/5w=59 | | 4=22-3h | | 6=d+20/9 | | 2x+3(5x-7)=48 |